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Abstract Let (P) denote the vector maximization problem

max{f (x) = (
f1(x), . . . , fm(x)

)
: x ∈ D},

where the objective functions fi are strictly quasiconcave and continuous on the feasi-
ble domain D, which is a closed and convex subset of Rn. We prove that if the efficient
solution set E(P) of (P) is closed, disconnected, and it has finitely many (connected)
components, then all the components are unbounded. A similar fact is also valid for
the weakly efficient solution set Ew(P) of (P). Especially, if fi (i = 1, . . . , m) are linear
fractional functions and D is a polyhedral convex set, then each component of Ew(P)

must be unbounded whenever Ew(P) is disconnected. From the results and a result
of Choo and Atkins [J. Optim. Theory Appl. 36, 203–220 (1982)] it follows that the
number of components in the efficient solution set of a bicriteria linear fractional
vector optimization problem cannot exceed the number of unbounded pseudo-faces
of D.
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1 Introduction

Consider the strictly quasiconcave vector maximization problem

(P) max{f (x) = (
f1(x), . . . , fm(x)

)
: x ∈ D},

where the objective functions fi are strictly quasiconcave and continuous on the fea-
sible domain D, which is a closed and convex subset of Rn. By definition, a function
ϕ: D → R is said to be quasiconcave on D if for any x1, x2 ∈ D and for any t ∈ (0, 1)

it holds

ϕ(tx1 + (1 − t)x2) ≥ min{ϕ(x1), ϕ(x2)}.
We say that ϕ is strictly quasiconcave on D, if ϕ is quasiconcave on D and for any
x1, x2 ∈ D satisfying ϕ(x1) �= ϕ(x2), and for any t ∈ (0, 1), it holds

ϕ(tx1 + (1 − t)x2) > min{ϕ(x1), ϕ(x2)}.
If x ∈ D and one cannot find any y ∈ D such that f (x) ≤ f (y) and f (y) �= f (x), then

x is said to be an efficient solution of (P). If x ∈ D and there does not exist y ∈ D such
that f (x) < f (y), then x is called a weakly efficient solution of (P). As usual, for any
w, w′ ∈ Rm, the inequality w ≤ w′ (resp., w < w′) means wi ≤ w′

i (resp., wi < w′
i) for

all i = 1, . . . , m.
It is easy to verify that if ϕ: Rn → R is a linear fractional function defined on D

(i.e. ϕ(x) = (aTx + α)/(bTx + β) for some a, b ∈ Rn, α, β ∈ R, and bTx + β �= 0 for all
x ∈ D), then ϕ is strictly quasiconcave on D.

As a special case of (P), we consider the following linear fractional vector optimi-
zation problem (LFVO problem, for brevity):

(P1) max{f (x) = (f1(x), . . . , fm(x)): x ∈ Rn, Cx ≥ d},
where C is an (r × n)-matrix, d is an r-dimensional column vector, and

fi(x) = (aT
i x + αi)/(bT

i x + βi) (i = 1, . . . , m)

are linear fractional functions defined on the set D = {x ∈ Rn: Cx ≥ d}.
The efficient solution set and the weakly efficient solution set of (P) (resp., of (P1))

are denoted by E(P) and Ew(P)) (resp., by E(P1) and Ew(P1)).
We now introduce some standard notions and notation. A subset Z of an Euclidean

space is said to be connected if one cannot find any pair (Z1, Z2) of disjoint nonempty
open subsets Z1, Z2 of Z in the induced topology such that Z = Z1 ∪Z2. One says that
Z is path connected if for any a, b ∈ Z there exists a continuous mapping γ : [0, 1] → Z
such that γ (0) = a, γ (1) = b. If for any given points a, b ∈ Z there exists a sequence
of line segments [zi, zi+1] ⊂ Z (i = 0, . . . , k − 1) such that z0 = a and zk = b, then Z
is said to be connected by line segments. If Z is disconnected, then we denote by χ(Z)

the (cardinal) number of components of Z. By definition, a subset M ⊂ Z is said to
be a component of Z if M is connected and it is not a proper subset of any connected
subset of Z. The closed ball with the center at x and radius ε > 0 is denoted by B̄(x, ε),
while its interior is denoted by B(x, ε). For a subset Z ⊂ Rk and a constant ρ > 0, we
put

dist(x, Z): = inf{‖x − u‖: u ∈ Z}
for all x ∈ Rk, and B(Z, ρ): = {x ∈ Rk: dist(x, Z) < ρ}.
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Topological properties of the solution sets of strictly quasiconvex vector minimiza-
tion problems have been discussed by several authors (see Schaible 1983; Warburton
1983; Luc 1987, 1989; Daniilidis et al. 1997; Benoist 1998; Huy and Yen 2004, 2005, and
the references therein). Apart from Huy and Yen (2004, 2005), the feasible domain is
assumed to be compact.

The following result of Benoist (1998) extends the preceding results in Schaible
(1983) and in Daniilidis et al. (1997) where the cases m = 2 and m = 3 were treated.

Theorem 1.1 If D is bounded, then E(P) is connected. Thus, if the feasible domain of
(P1) is bounded, then E(P1) is connected.

The connectedness of E(P1) in the case where D is a bounded set can be proved
by using several known results on monotone affine variational inequalities (see Yen
and Phuong 2000).

The next theorem is due to Choo and Atkins (1983).

Theorem 1.2 If the feasible domain of (P1) is bounded, then Ew(P1) is connected by
line segments.

Using Theorem 1.2, the second assertion of Theorem 1.1, and a compactification
procedure, Phu (1998, Private Communication) obtained the following result.

Theorem 1.3 If the sets E(P1) and Ew(P1) are bounded, then they are connected.

Note that the efficient solution set and the weakly efficient solution set of (P) may
be disconnected if D is unbounded (see Choo and Atkins 1983). In Hoa et al. (2005a)
it was proved that for any integer m there exist LFVO problems with m objective
criteria whose efficient solution set and weakly efficient solution set have exactly m
components.

The aim of this paper is to extend Theorem 1.3 to the case of strictly quasiconcave
vector maximization problems and prove that, under some additional conditions, if
the efficient solution set (or the weakly efficient set) of (P) is disconnected, then all
the components in the set are unbounded. The facts help us to understand better the
topological structure of the solution sets of strictly quasiconcave vector maximization
problems with unbounded feasible domains. As an application, we give a rough esti-
mate for the number of components in the efficient solution set of a bicriteria linear
fractional vector optimization problem.

The main results are obtained in Sects. 2 and 3. An application of the results to
bicriteria LFVO problems is given in Sect. 4.

2 Extension of Theorem 1.3

In this section, we will extend Theorem 1.3 to the case of strictly quasiconcave vector
maximization problems.

The next simple lemma shows that, for a feasible point, the property of being an
efficient solution or a weakly efficient solution of (P) has a local character.

Lemma 2.1

(a) If x ∈ D is a local efficient solution of (P), that is there exists ε > 0 such that x is an
efficient point of the problem

max{f (z): z ∈ D ∩ B̄(x, ε)}, (2.1)
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then x ∈ E(P).
(b) If x ∈ D is a local weakly efficient solution of (P), that is there exists ε > 0 such that

x is a weakly efficient point of the problem (2.1), then x ∈ Ew(P).

Proof We will only prove (a). The proof of (b) is similar. Suppose that x, which is the
center of the ball B̄(x, ε), is an efficient solution of (2.1). If x /∈ E(P), then there exist
y ∈ D and i0 ∈ {1, . . . , m} such that f (x) ≤ f (y) and fi0(x) < fi0(y). Choose t ∈ (0, 1)

as small as yt: = (1 − t)x + ty belongs to D ∩ B̄(x, ε). From the quasiconcavity of fi it
follows that

fi(yt) ≥ min{fi(x), fi(y)} = fi(x)

for all i = 1, . . . , m. The strict quasiconcavity of fi0 and the inequality fi0(x) < fi0(y)

imply fi0(x) < fi0(yt). This contradicts the assumption that x is an efficient solution of
(2.1). �

Theorem 2.1 If the efficient solution set E(P) is bounded, then it is connected.

Proof To obtain a contradiction, suppose that E(P) is disconnected. Then there exist
open subsets U and V of Rn such that

U ∩ E(P) �= ∅, V ∩ E(P) �= ∅,
(

U ∩ E(P)
)

∩
(

V ∩ E(P)
)

= ∅, E(P) ⊂ U ∪ V.

(2.2)

Since E(P) is bounded, there is ρ > 0 such that E(P) ⊂ B(0, ρ). By Theorem 1.1, the
efficient solution set of the vector maximization problem

max{f (x): x ∈ D ∩ B̄(0, 2ρ)}, (2.3)

which is abbreviated to E0, is connected. Let U0 = U∩B(0, ρ), V0 = V∪
(

Rn\B̄(0, ρ)
)

.

We now show that

U0 ∩ E0 �= ∅, V0 ∩ E0 �= ∅, (2.4)

(
U0 ∩ E0

)
∩

(
V0 ∩ E0

)
= ∅, (2.5)

E0 ⊂ U0 ∪ V0. (2.6)

From Lemma 2.1, it follows that E(P) ∩ B(0, 2ρ) = E0 ∩ B(0, 2ρ). Combining this
with the inclusion E(P) ⊂ B(0, ρ) we deduce that E(P) = E0 ∩ B(0, 2ρ), hence (2.4)
is a consequence of the first two properties in (2.2). Since U0 = U ∩ B(0, ρ) and

V0 = V ∪
(

Rn\B̄(0, ρ)
)

, we have
(

U0 ∩ E0

)
∩

(
V0 ∩ E0

)
⊂

(
U ∩ E(P)

)
∩

(
V ∩ E(P)

)
.

Thus, the third property in (2.2) implies (2.5). Finally, the inclusion (2.6) follows from

the fourth property in (2.2) and the inclusion E0 ⊂ E(P) ∪
(

Rn\B̄(0, ρ)
)

. We have

arrived at a contradiction, because (2.4)–(2.6) imply that E0 is a disconnected set. �

In order to extend the assertion of Theorem 1.3 related to the weakly efficient

solution set to the case of strictly quasiconcave vector maximization problems, we
need a lemma, which is a special case of Theorem 4.1 in Warburton (1983). The proof
given below shows that the lemma can be seen also as a corollary of Theorem 1.1.
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Lemma 2.2 If D is bounded, then Ew(P) is connected.

Proof There is no loss of generality in assuming that D is nonempty. Since the set
E(P) is nonempty (see Luc 1989) and connected by Theorem 1.1, it suffices to show
that “for each u0 ∈ Ew(P) there exists a sequence {u1, u2, . . . , um} ⊂ D such that the
line segments [ui−1, ui] (i = 1, . . . , m) are contained in Ew(P), and um ∈ E(P)”.

Let u1 be a solution of the optimization problem

max{f1(z): z ∈ D, f (z) ≥ f (u0)}. (2.7)1

For any i ∈ {2, . . . , m}, if ui−1 has been chosen, then as ui we choose an arbitrary
solution of the optimization problem

max{fi(z): z ∈ D, f (z) ≥ f (ui−1)}. (2.7)i

(By the compactness of D and the continuity of fi, problem (2.7)i has at least one
solution.) Using the quasiconcavity of the functions fi, by induction it is easy to verify
that the line segments [ui−1, ui] (i = 1, . . . , m) are contained in Ew(P). If um /∈ E(P),
then there exist y ∈ D and i0 ∈ {1, . . . , m} such that f (um) ≤ f (y) and fi0(u

m) < fi0(y).
Since f (ui0−1) ≤ f (um) and f (ui0) ≤ f (um), this implies that ui0 cannot be a solution
of (2.7)i0 , a contradiction. Thus um ∈ E(P). �

Theorem 2.2 If Ew(P) is bounded, then it is connected.

Proof It suffices to apply Lemmas 2.1, 2.2, and arguments similar to those in the proof
of Theorem 2.1. �


3 Unboundedness of the components in disconnected solution sets

It turns out that the set Ew(P1) cannot have any bounded component if it is dis-
connected. A similar property also holds for the sets E(P1), E(P), and Ew(P) under
certain mild assumptions.

Theorem 3.1 The following properties hold:

(1) If Ew(P1) is disconnected, then each component in Ew(P1) is unbounded.
(2) If E(P1) is disconnected, closed, and χ(E(P1)) is finite, then each component in

E(P1) is unbounded.

Proof

(1) The set Ew(P1) is closed (see Choo and Atkins 1983). Since the components
of Ew(P1) are closed in the induced topology, they are closed subsets of Rn.
Suppose the first assertion of the theorem is false. Then Ew(P1) has a bounded
component M0 and there is a point x̂ ∈ Ew(P1)\M0. Fix a point x ∈ M0. Let
μ0 = max{‖u‖: u ∈ M0},

ρ = max
{|̂x1| + 1, . . . , |̂xn| + 1, μ0 + 1

}

and 	 = [−ρ, ρ] × · · · × [−ρ, ρ]. It is clear that

M0 ⊂ int 	 = (−ρ, ρ) × · · · × (−ρ, ρ).
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Consider the LFVO problem

(P′
1) min {f (x): x ∈ D	} ,

where

D	 = D ∩ 	 = {x: Cx ≥ d, −ρ ≤ xi ≤ ρ, i = 1, . . . , n} .

Since Ew(P1)∩	 ⊂ Ew(P′
1), we have {x, x̂} ⊂ Ew(P′

1). As D	 is compact, Ew(P′
1)

is connected by line segments (see Theorem 1.2). Then there exist x1, x2, . . . , xk

in Ew(P′
1) such that x1 = x, xk = x̂, and

[xi, xi+1] ⊂ Ew(P′
1) for i = 1, . . . , k − 1.

It is clear that there must exists an index j ∈ {1, . . . , k − 1} such that xj ∈ M0, but
xj+1 /∈ M0. On one hand, since 	 is convex and xj ∈ int 	,

[xj, xj+1): = {(1 − t)xj + txj+1: 0 ≤ t < 1} ⊂ int 	.

On the other hand, since Ew(P′
1) ∩ int 	 ⊂ Ew(P1) by Lemma 2.1, we have

[xj, xj+1) ⊂ Ew(P1). As xj ∈ M0 and M0 is a component of Ew(P1), this implies
[xj, xj+1) ⊂ M0. From the closedness of M0 it follows that [xj, xj+1] ⊂ M0. This
contradicts the fact that xj+1 /∈ M0.

(2) This assertion follows from the second assertion in the next theorem. �

Theorem 3.2 The following properties hold:

(1) If Ew(P) is disconnected and χ(Ew(P)) is finite, then each component in Ew(P) is
unbounded.

(2) If E(P) is disconnected, closed, and χ(E(P)) is finite, then each component in
E(P) is unbounded.

Proof Since the proofs of (1) and (2) are similar, we will only prove (2). From the
assumptions it follows that every component of E(P) is a closed subset of Rn. To obtain
a contradiction, suppose that E(P) is disconnected and it has a bounded component
M0. Then M0 is a compact set. Let

E(P)\M0 =

⋃

i=1

Mi,

where Mi, i = 1, . . . , 
, are different components of E(P). We put K = ⋃

i=1 Mi. Of

course, K is nonempty and closed. Let

ρ0 = inf
x∈M0

dist(x, K).

It is well known that dist(·, K) is a Lipschitz function on Rn with the Lipschitz constant
1. Since dist(x, K) > 0 for all x ∈ M0 and M0 is compact, we have ρ0 > 0. Setting
U = B

(
M0, ρ0

2

)
, V0 = B

(
K, ρ0

2

)
, we see that U, V0 are disjoint open sets satisfying

U �= ∅, V0 �= ∅, E(P) ⊂ U ∪ V0.

Fix a point x̂ ∈ K. Let μ0 = max{‖u‖: u ∈ M0},
ρ = max {|̂x1| + 1, . . . , |̂xn| + 1, μ0 + ρ0 + 1} .
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Consider the box 	 = [−ρ, ρ] × · · · × [−ρ, ρ] and the vector optimization problem

(P′) min {f (x): x ∈ D	} ,

where D	 = D ∩ 	. We have dist(x, ∂	) > ρ0 for all x ∈ M0, where ∂	 denotes the
boundary of 	. Put

V = (
V0 ∩ int 	

) ∪ B
(
∂	,

ρ0

2

)
.

From Lemma 2.1 and the construction of U, V it follows that U �= ∅, V �= ∅, U∩V = ∅,
and

U ∪ V ⊃ E(P′).

Hence E(P′) is disconnected. We have arrived at a contradiction, because E(P′) is
connected by Theorem 1.1. �


It would be desirable to remove the assumptions on the closedness of the set E(P1)

(resp., E(P)) and the finiteness of the number χ(E(P1)) (resp., χ(E(P))) from the
second assertion of Theorem 3.1 (resp., Theorem 3.2). Also, it would be nice if the
assumption on the finiteness of the number χ(Ew(P)) in the first assertion of Theorem
3.2 can be omitted. In our opinion, proving these general statements by using Theorem
1.1 and a compactification procedure, in which (P1) and (P) are replaced by vector
optimization problems with compact feasible domains, is not an easy task.

The next example is designed to clarify the above remark.

Example 3.1 Let M be a subset of R2 defined by setting

M = ([0, 1] × {0}) ∪
( ∞⋃

k=1

(
[0, +∞) ×

{
1
k

}))

.

Let

M0 = [0, 1] × {0}, 	 = [−2, 2] × [−2, 2], M̃ = (M ∩ 	) ∪ ({2} × [0, 1]).
(Here M and M̃ resemble, respectively, the sets E(P) and E0 in the proof of Theorem
2.1 with the ball B̄(0, 2ρ) being replaced by the box 	.) Note that M̃ is the union of
M ∩ 	 and one part of the boundary of 	. Note also that M̃ ∩ int	 = M ∩ int	. We
now show that:

(1) M0 is a bounded component of M;
(2) M̃ is connected.

Therefore, after adding to M∩	 some boundary points of 	 to have M̃, M0 is no longer
a component of the new set! To prove (1), suppose to the contrary that there exists a
connected set M1 ⊂ M such that M0 ⊂ M1 and M1 �= M0. Fix a point x̄ ∈ M1\M0.

There is a unique integer l ≥ 2 such that x̄ ∈ [0, +∞) ×
{

1
l

}
. Put

U =
{

x = (x1, x2) ∈ R2: x2 <
1
2

(
1
l

+ 1
l + 1

)}
,

V =
{

x = (x1, x2) ∈ R2: x2 >
1
2

(
1
l

+ 1
l + 1

)}
.
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It is clear that

U ∩ M1 �= ∅, V ∩ M1 �= ∅, M1 ⊂ U ∪ V, U ∩ V = ∅.

This shows that M1 is disconnected, a contradiction. To prove (2), suppose to the
contrary that there exist open subsets U, V of R2 such that

U ∩ M̃ �= ∅, V ∩ M̃ �= ∅, M̃ ⊂ [U ∩ M̃] ∪ [V ∩ M̃], [U ∩ M̃] ∩ [V ∩ M̃] = ∅.

Since M0 is connected, we may assume that M0 ⊂ U. As U is an open set, for l large

enough we have
(
[0, +∞) ×

{
1
l

})
∩ U �= ∅. Hence

(
[0, +∞) ×

{
1
l

})
∪ ({2} × [0, 1]) ⊂ U,

because the set on the left-hand side of the last inclusion is path connected. Then it is
easy to see that M̃ ⊂ U. But this implies that V ∩ M̃ = ∅, which is impossible.

4 An application

In this section, we show that Theorem 3.1 leads to a rough estimate for the number
χ(E(P1)).

Let CT
j denote the column vector corresponding to the jth row of the matrix

C ∈ Rr×n. Let dj denote the jth component of the vector d ∈ Rr. A pseudo-face of the
polyhedral convex set

D = {x ∈ Rn: Cx ≥ d}
is the set Dα of all x ∈ Rn satisfying the system

CT
j x = dj for i ∈ α, CT

j x > dj for i /∈ α,

where α ⊂ {1, 2, . . . , r} is a set of indexes. It is clear that the number of pseudo-faces
of D cannot exceed 2r.

Proprsition 4.1 For any bicriteria linear fractional vector optimization problem of the
form (P1), if E(P1) is a disconnected closed set, then χ(E(P1)) cannot exceed the number
of unbounded pseudo-faces of D.

Proof According to Corollary 3.1 from Choo and Atkins (1982), the intersection
of the efficient solution set of (P1) with a pseudo-face Dα of D is a convex set.
So, Dα can have nonempty intersection with not more than one component of
E(P1). In particular, χ(E(P1)) is less or equal the number of pseudo-faces of D.
Since E(P1) is a disconnected closed set, each component in E(P1) is unbounded by
Theorem 3.1. It follows that χ(E(P1)) cannot exceed the number of unbounded
pseudo-faces of D. �


Let us consider two illustrative examples.

Example 4.1 (see Hoa et al. 2005a) Let n = m = 2,

D =
{

x = (x1, x2) ∈ R2: x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 1
}

and
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fi(x) = −xi + 1
2

x1 + x2 − 3
4

(i = 1, 2).

In this case, we have

E(P1) = Ew(P1) = ([1, ∞) × {0}) ∪ ({0} × [1, ∞)
)
, χ(E(P1)) = χ(Ew(P1)) = 2,

while the number of unbounded pseudo-faces of D is 3.

Example 4.2 (see Hoa et al. 2005b) Let n = m = 2,

D = {x ∈ R2: x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 1},

f1(x) = x1 + 1
2x1 + x2

, f2(x) = −x1 − 2
x1 + x2

.

In this case, we have

E(P1) = Ew(P1) =
(
[1, +∞) × {0}

)
∪

(
[0, +∞) × {2}

)
∪

(
{0} × [2, +∞)

)
.

Hence χ(E(P1)) = χ(Ew(P1)) = 2, while the number of unbounded pseudo-faces of
D is 3. It is worthy to stress that the efficient solution set has nonempty intersections
with all the three unbounded pseudo-faces. (There are two unbounded pseudo-faces
of D which have nonempty intersections with one component of E(P1).)

One may conjecture that if m = 2 then

χ(E(P1)) ≤ 2, χ(Ew(P1)) ≤ 2, χ(E(P)) ≤ 2, χ(Ew(P)) ≤ 2.

More generally,

max{χ(E(P1)), χ(Ew(P1))} ≤ min{m, n}
and

max{χ(E(P)), χ(Ew(P))} ≤ min{m, n}.
None of these six estimates has been established so far.
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